

Optical MC Update
06 / 09 / 2010

Ben Jones, MIT

Massachusetts Institute of Technology

1) New PMTHit Structure

 Significantly changed the design since last time, taking on board Bills
comments about not using the GEANT4 base classes

 Also simplified the class structure – no abstract base class, just
simple data container. For any practical pulse reconstruction, same
photon data is always required anyway.

PMTHitCollection

PMTHit

PMTPhoton

VectorMap
key: PMT ID

VectorMap
key: Track ID

PMT Photon:

Bool_t SetInSD
TLorentzVector Momentum

TLorentzVector Position

PMTHit Data Content

 One PMTHit per PMT per event

 Each PMTHit contains data about all photons which stepped into the
sensitive volume

 Each PMTHit then used to generate PMT digi further along the simulation
chain. This part has not yet been started.

PMTHit

Flag which tells us this
was produced in the SD,
not constructed by
randomly accessing the
map

Photon 4-momentum

Photon x,y,z,t on
PMT lens

VectorMap by Track ID

Photon 4-momentum

PMT Framework

PMTSensitiveDetector

PMTLookupDetectorConstruction
Map physical volumes to PMT IDs

Associate SD with logical volume

LarG4 package

PMTHitCollection PMTHit PMTPhoton

Simulation packagemicroboone.gdml

PMT lenses in appropriate
shapes and positions

Volumes named
”PMTSensitive” are associated
with a PMTSensitiveDetector

Classes to be stored in output.root

Classes that interface with Geant4

PMT Implementation Details

 Detector Construction Time:
- Parse GDML as normal.
- Loop through physical volume store looking for a volume named PMTSensitive. If
one is found, associate a PMTSensitiveDetector with it.
- If such a volume was found, loop through the physical volume store looking for
placed copies of this volume. Every time one is found, assign it a unique name and a
PMT ID, and add it to the singlet PMTLookup table.

 Start of Event
- PMTSensitiveDetector produces a new PMTHitCollection for itself.

 During Event
- If a photon steps into a volume with a PMTSensitiveDetector, kill the track and
produce a PMTPhoton object. Find the name of the physical volume and look up the
PMT ID in the PMTLookup table. Store the PMTPhoton in the relevant PMTHit of the
PMTHitCollection.

 End of Event
- LarG4 looks for PMTSensitiveDetectors in the Geant4 sensitive detector manager.
If one is found, it is asked for its PMTHitCollection, which is stored in the event.

2) New PMT Geometry

1) TPBPlate

Shape:

Cylinder

Material:

TPB

Physics:
OpWLS Process in

OpticalPhysics constructor

2) PMTLens

Shape:

Radius 15cm
Depth 5cm

Material

LAr *

Physics:
PMTSensitiveDetector

associated in
DetectorConstruction

Previous (prototype) PMT
Geometry:

Updated Geometry

1) TPBCoating

Shape:

Cylinder

Material:

TPB

Physics:

OpWLS Process in
OpticalPhysics constructor

3) PMTLens

Shape:

Ellipsoid

Material:

LAr *

Physics:

PMTSensitiveDetector
associated in

DetectorConstruction

2) AcrylicPlate

Shape:

Cylinder

Material:

Acrylic

4) PMTUnderside

Shape:

Ellipsoid

Material:

Solid Glass

5) PMTStalk

Shape:

Cylinder

Material:

Solid Glass

6) PMTSteelBase

Shape:

Cylinder

Material:

Stainless Steel

1.25” 4.00” 6.00”

3”

2.5”

2.5”

1.5”
* PMT Lens material defined as LAr
so photon travels unimpeded into
sensitive detector area. From here we
can use photon position and
momentum and measured PMT
properties to decide if it is detected.

PMTVolume

PMT Positions

 An undergrad in our group, Tess Smidt, has been working on determining
PMT positions within the cryostat to fit between support beams, etc

 I will be adding PMT placement to the TPC definition scripts in the Geometry
package rather than hand writing the gdml as I have been thus far

 The positions provided by Tess in the coming weeks will be a first attempt at
reallistic PMT placement

 Right now, I have a single line of 10 PMTs along one side for code testing.

3) Progress Towards PhotonLibrary

 Recall : Simulating every photon per event takes far too
long (hours per event)

 Aim is to develop a library of PMT responses for
sctinillation photons produced at any point in the detector

 To build the library, need a controllable, isotropic sample
of 1000s (10000s?) of photons per voxel.
(Note – optical voxels not necessarily the same as drift voxels)

 This task requires a custom event generator.
(closest existing event generator would be the single particle generator – but
1 photon per evt brings too much overhead)

 I have written evgen::LightSource for this purpose

LightSource Event Generator

 Event generator which simulates an
extended, isotropic light source at
some position in the detector

 Two modes, as described on next
two slides:

- Scan Mode

- File Mode

 In both modes, can optionally
produce a ttree of
- photon positions
- photon momenta
- event ID
To store in the histos.root file (Code loosely based on the

single particle event generator)

LightSource in Scan Mode

 Step through the detector in
x,y,z

 Choose:
- voxel size
- number photons per event
- photon momenta and spread
- production time and spread
- distributions to sample p,t,x
 (uniform / gaussian)

 Read from geometry:
- size and position of TPC

LightSource in FileMode

 Place light souce at custom
positions in the detector,
specified by text file

 Set in config:
- File path
- distributions to sample p,t,x
 (uniform / gaussian)

 Set in text file (1 line / event)
- position, extent of light source
- production time, spread
- photon momenta, spread
- number of photons

 Read from geometry
- centre of TPC (origin)

Next : LibraryBuilder, PMTDigi,
PropagatePhotons

 LightSource event generator →
PMT response Library

Quite a simple analyzer can do this for us. But how to go from PMT Photons
to PMT pulse shapes, and which should be stored in the library is still
unclear.

 Then the lookup part : Photons per voxel →
PMT response

New module, PropagatePhotons, to run side by side with DriftElectrons. Do
not step any photons, but rather use a custom scintillation process to
produce inputs with which to sample the PMT response library

 Computational power to build the library
Certainly not locally on flxi09. Can somebody give me some pointers?

Summary

 Steady progress on Optical MC

 With the PMTSensitiveDetector and PMTHits in place,
framework for simulation and detection of optical photons
is now complete.

 Realistic PMT geometry defined, and realistic positions on
the way

 Work towards building a PMT response library has begun,
first step was development of the LightSource event
generator which is now in CVS

 Onwards to library builder, library reader and PMT
digizitation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

